PGC Reversion to Pluripotency Involves Erasure of DNA Methylation from Imprinting Control Centers followed by Locus-Specific Re-methylation
نویسندگان
چکیده
Primordial germ cells (PGCs) are fate restricted to differentiate into gametes in vivo. However, when removed from their embryonic niche, PGCs undergo reversion to pluripotent embryonic germ cells (EGCs) in vitro. One of the major differences between EGCs and embryonic stem cells (ESCs) is variable methylation at imprinting control centers (ICCs), a phenomenon that is poorly understood. Here we show that reverting PGCs to EGCs involved stable ICC methylation erasure at Snrpn, Igf2r, and Kcnqot1. In contrast, the H19/Igf2 ICC undergoes erasure followed by de novo re-methylation. PGCs differentiated in vitro from ESCs completed Snrpn ICC erasure. However, the hypomethylated state is highly unstable. We also discovered that when the H19/Igf2 ICC was abnormally hypermethylated in ESCs, this is not erased in PGCs differentiated from ESCs. Therefore, launching PGC differentiation from ESC lines with appropriately methylated ICCs is critical to the generation of germline cells that recapitulate endogenous ICC erasure.
منابع مشابه
O-11: N-a-acetyltransferase 10 Protein Regulates DNA Methylation and Embryonic Development
Background Genomic imprinting is a heritable and developmentally essential phenomenon by which gene expression occurs in an allele-specific manner1. While the imprinted alleles are primarily silenced by DNA methylation, it remains largely unknown how methylation is targeted to imprinting control region (ICR), also called differentially methylated region (DMR), and maintained. Here we show that ...
متن کاملI-50: Embryo Loss Due to Epigenetic Anomaliesin the Male Germ Line: Role of Estrogen
Background: To investigate if aberrant methylation and expression of imprinted genes of the Igf2-H19 locus in the spermatozoa and embryos could be a paternal epigenetic factor involved in early embryo loss To elucidate the role of estrogen in acquisition of the imprinting at the Igf2-H19 locus during spermatogenesis Materials and Methods: Adult male rats of Holtzman strain were administered tam...
متن کاملSequences Sufficient for Programming Imprinted Germline DNA Methylation Defined
Epigenetic marks are fundamental to normal development, but little is known about signals that dictate their placement. Insights have been provided by studies of imprinted loci in mammals, where monoallelic expression is epigenetically controlled. Imprinted expression is regulated by DNA methylation programmed during gametogenesis in a sex-specific manner and maintained after fertilization. At ...
متن کاملDirect Bisulfite Sequencing and Methylation Specific PCR to Detect Methylation of p15INK4b and F7 genes in Coronary Artery Disease Patients
Genome-Wide Association Studies (GWAS) have identified genetic variants contributing to the risk of cardiovascular disease (CVD) at the chromosome 9p21 locus. The chromosome 9p21 is an important susceptibility locus for several multifactorial diseases like ischemic stroke, aortic aneurysm, type 2 diabetes mellitus and coronary artery disease (CAD). F7 gene because of its role in activating the ...
متن کاملImprinting of mammalian male gametes is gene specific and does not occur at a single stage of differentiation.
Epigenetic modifications such as DNA methylation and alterations to chromatin structure have been proposed as hallmarks of imprinting in somatic cells after fertilization. In the germ cell line, gene imprinting needs to be reset in order to transmit the correct sex-specific imprinting pattern to the next generation. The precise timing of imprint erasure and re-establishment for many genes remai...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2015